Κατηγορία: Επιστήμη

Θερμοδυναμική του κλιματικού συστήματος

Για να κατανοήσετε το κλίμα της Γης, σκεφτείτε το ως μια γιγάντια, πλανητικής κλίμακας θερμική μηχανή, που καθορίζει την κυκλοφορία των ωκεανών και της ατμόσφαιρας.

  • Martin Singh, Monash University in Victoria, Australia
  • Morgan O’Neill, Stanford University in California
  • Από το Physics Today

Κατά τη διάρκεια της ιστορίας της, η Γη έχει βιώσει πολύ διαφορετικά κλίματα, συμπεριλαμβανομένων του «Γη χιονοστιβάδας», κατά τη διάρκεια των οποίων ο πλανήτης πιστεύεται ότι ήταν εξ ολοκλήρου καλυμμένος με πάγο, και περιόδους θερμοκηπίου, κατά τις οποίες προϊστορικοί αλιγάτορες μπορεί να περιφέρονταν στην Αρκτική. Οι πρόσφατες ανθρωπογενείς εκπομπές αερίων του θερμοκηπίου είναι η αιτία της σύγχρονης, ταχείας κλιματικής αλλαγής, η οποία αποτελεί αυξανόμενο κίνδυνο για τις κοινωνίες και τα οικοσυστήματα.

Το κλιματικό σύστημα περιλαμβάνει τα ρευστά περιβλήματα της Γης: την ατμόσφαιρα, τους ωκεανούς και την κρυόσφαιρα (σ.μ. τα παγωμένα μέρη της Γης). Αυτά τα συστατικά, μαζί με τις εξελισσόμενες επιφανειακές ιδιότητες της στερεάς λιθόσφαιρας, είναι υπεύθυνα για την ανάκλαση και την απορρόφηση της περισσότερης ακτινοβολίας που λαμβάνεται από τον Ήλιο. Το κλιματικό σύστημα είναι κοντά σε ένα ενεργειακό ισοζύγιο ανά πάσα στιγμή. Η συνολική ενέργεια δεν παρουσιάζει σημαντικές διακυμάνσεις στο χρόνο επειδή η επίγεια ακτινοβολία εκπέμπεται στο διάστημα με τον ίδιο περίπου ρυθμό με τον οποίο απορροφάται η ηλιακή ενέργεια.

Το ότι βρίσκεται σε σχεδόν ακριβή ενεργειακή ισορροπία με το σύμπαν επιτρέπει στη Γη να έχει ένα σχετικά οικείο κλίμα αύριο και σε έναν αιώνα από τώρα. Αλλά με την πάροδο του χρόνου, μικρές αποκλίσεις από ένα αυστηρό ενεργειακό ισοζύγιο μπορούν να προκαλέσουν στο κλίμα τεράστιες αλλαγές. Τέτοιες μικρές αποκλίσεις οφείλονται στους ημερήσιους και εποχιακούς κύκλους, στις τροχιακές διακυμάνσεις — στους κύκλους Milankovitch, για παράδειγμα (βλ. το άρθρο του Mark Maslin, Physics Today, Μάιος 2020, σελίδα 48)— και σε εσωτερικές δυνάμεις, όπως οι ανθρωπογενείς εκπομπές διοξειδίου του άνθρακα .

Ένα άλλο χαρακτηριστικό του κλίματος της Γης – στην πραγματικότητα, οποιουδήποτε πλανητικού κλίματος – είναι ότι εξελίσσεται μη αναστρέψιμα. Φανταστείτε να παρακολουθείτε ένα βίντεο 10 δευτερολέπτων ενός χωραφιού με ένα φυλλώδες δέντρο μια ηλιόλουστη μέρα. Θα παρατηρούσατε αν αυτό το βίντεο είχε εμφανιστεί αντίστροφα; Μάλλον όχι. Τώρα φανταστείτε να παρακολουθείτε ένα κλιπ 10 δευτερολέπτων από το ίδιο χωράφι και δέντρο κατά τη διάρκεια μιας καταιγίδας. Θα μπορούσατε πιθανώς να αξιολογήσετε αμέσως εάν το κλιπ προβλήθηκε εγκαίρως προς τα εμπρός ή προς τα πίσω. Ξεχωρίζουν μερικές προφανείς ενδείξεις: Η βροχή πρέπει να πέφτει προς το έδαφος και τα φύλλα πρέπει να χωρίζονται από το δέντρο και να μην προσκολλώνται σε αυτό.

Το κλιματικό σύστημα περιέχει μυριάδες μη αναστρέψιμες διεργασίες και, τόσο σε μια ήρεμη όσο και σε μια θυελλώδη ημέρα, παράγουν εντροπία. Όπως η ενέργεια, η εντροπία είναι μια ιδιότητα οποιουδήποτε θερμοδυναμικού συστήματος και μπορεί να υπολογιστεί εάν κάποιος γνωρίζει την κατάσταση του συστήματος. Αλλά σε αντίθεση με την ενέργεια, η εντροπία δεν διατηρείται. Αντίθετα, παράγεται συνεχώς με μη αναστρέψιμες διαδικασίες. Αν και οι φυσικοί θεωρούν συχνά ιδανικές, αναστρέψιμες διεργασίες, όλες οι πραγματικές φυσικές διεργασίες είναι μη αναστρέψιμες και επομένως παράγουν εντροπία.

Σύμφωνα με τον δεύτερο θερμοδυναμικό νόμο, η μη αναστρεψιμότητα στο κλιματικό σύστημα αυξάνει μόνιμα τη συνολική εντροπία του σύμπαντος. Όπως και στην περίπτωση της συνολικής ενέργειας, ωστόσο, η συνολική εντροπία στο κλιματικό σύστημα είναι σχετικά σταθερή. Αυτό συμβαίνει επειδή το κλίμα είναι ένα ανοιχτό σύστημα που δέχεται πολύ λιγότερη εντροπία από τον Ήλιο από ό,τι εξάγει στο σύμπαν (βλ. πλαίσιο 1). Η διαφορά μεταξύ αυτού που εισάγεται και αυτού που εξάγεται παράγεται τοπικά, μέσω τριβής, ανάμειξης ή μη αναστρέψιμων αλλαγών φάσης.

Πλαίσιο 1. Εντροπία ακτινοβολίας
Όπως η ύλη, η ακτινοβολία υπακούει στον δεύτερο θερμοδυναμικό νόμο. Οι έννοιες της εντροπίας και της μη αναστρεψιμότητας είναι επομένως εξίσου σχετικές με τα φωτόνια όσο και με τα άτομα και τα μόρια. Όμως, παρόλο που ο δεύτερος νόμος αναπτύχθηκε για την ύλη χρησιμοποιώντας τις τεχνικές της κλασικής θερμοδυναμικής από τους Sadi Carnot, Rudolf Clausius και άλλους στα μέσα του 19ου αιώνα, μια πλήρης περιγραφή της εντροπίας της ακτινοβολίας έπρεπε να περιμένει τη θεωρία του Max Planck για την ακτινοβολία θερμότητας. Σύμφωνα με τον Planck, η εντροπία που μεταφέρεται από μια δέσμη ακτινοβολίας εξαρτάται από το φάσμα συχνοτήτων, τη γωνιακή κατανομή και την πόλωσή της. Μια δεδομένη ποσότητα ενέργειας ακτινοβολίας φέρει τη μεγαλύτερη ποσότητα εντροπίας όταν είναι χαμηλής συχνότητας, ισότροπη και μη πολωμένη.

Η Γη ανακατεύει μια εστιασμένη δέσμη ηλιακής ακτινοβολίας με μια διάχυτη δέσμη που αποτελείται από ανακλώμενη ηλιακή ακτινοβολία και επίγεια ακτινοβολία σε πολύ χαμηλότερη συχνότητα. Ως εκ τούτου, οι αλληλεπιδράσεις ακτινοβολίας, συμπεριλαμβανομένης της απορρόφησης, της εκπομπής και της ανάκλασης, είναι μη αναστρέψιμες στη Γη και συμβάλλουν στην παραγωγή εντροπίας του πλανήτη. Μια απλή ανάλυση αυτής της παραγωγής επιτρέπει σε κάποιον να απορρίψει γρήγορα την ιδέα – που μερικές φορές παρατηρείται σε σύγχρονες συζητήσεις για την υπερθέρμανση του πλανήτη – ότι το φαινόμενο του θερμοκηπίου παραβιάζει τον δεύτερο νόμο της θερμοδυναμικής (δείτε το άρθρο του Raymond Pierrehumbert, Physics Today, Ιανουάριος 2011, σελίδα 33).

Στην πραγματικότητα, η μη αναστρέψιμη παραγωγή εντροπίας από διαδικασίες ακτινοβολίας είναι η κυρίαρχη πηγή μη αναστρεψιμότητας στον πλανήτη. Ωστόσο, οι περισσότερες μελέτες του δεύτερου νόμου που εφαρμόζονται στη Γη θεωρούν μόνο την ύλη (άτομα και μόρια) ως μέρος του κλιματικού συστήματος, ενώ η ακτινοβολία (φωτόνια) θεωρείται μέρος του περιβάλλοντος. Από αυτή την άποψη, η ακτινοβολία αντιμετωπίζεται ως μια εξωτερική και αναστρέψιμη πηγή θερμότητας ή καταβόθρα και η μη αναστρέψιμη διαδικασία ακτινοβολίας δεν μπαίνει στις συζητήσεις για την πλανητική μηχανή θερμότητας.

Αν και το κλίμα είναι περίπου σταθερό, απέχει πολύ από τη θερμοδυναμική ισορροπία, η οποία θα ήταν μια πολύ ψυχρή και βαρετή κατάσταση χωρίς κίνηση. Αντίθετα, το κλιματικό σύστημα μπορεί να θεωρηθεί ως ένας κινητήρας, που τροφοδοτείται από την άνιση κατανομή της ηλιακής ακτινοβολίας που προσπίπτει σε αυτό. Είναι αυτές οι διαφορές στην ενέργεια, και οι προκύπτουσες διαφορές στη θερμοκρασία και την πίεση που παράγουν, που επιτρέπουν στον άνεμο να φυσά.

(περισσότερα…)

Τα μαθηματικά πίσω από την επιδημία

Μερικές απλές μετρήσεις χαρακτηρίζουν εστίες διάδοσης, όπως το COVID-19, αλλά ο σωστός υπολογισμός τους είναι εκπληκτικά δύσκολος.

Από το Physics Today
Της Alison Hill

Η Alison Hill είναι επίκουρος καθηγήτρια στο Ινστιτούτο Υπολογιστικής Ιατρικής και στην ομάδα δυναμικής μολυσματικών ασθενειών στο Πανεπιστήμιο Johns Hopkins στη Βαλτιμόρη του Μέριλαντ. Είναι επίσης επισκέπτης μελετητής στο Πανεπιστήμιο του Χάρβαρντ στο Κέιμπριτζ της Μασαχουσέτης.

Το έτος 2020 έχει καθοριστεί από την πανδημία COVID-19: Ο νέος κοροναϊός, που είναι υπεύθυνος για αυτό, έχει μολύνει εκατομμύρια ανθρώπους και προκάλεσε περισσότερους από ένα εκατομμύριο θανάτους. Όπως τα HIV, Zika, Ebola και πολλά στελέχη της γρίπης, ο κοροναϊός έκανε το εξελικτικό άλμα από ζώα σε ανθρώπους προτού προκαλέσει εκτεταμένο χάος. Η μάχη για τον έλεγχο συνεχίζεται.

Όταν εντοπίζεται ένα ξέσπασμα ασθένειας – συνήθως μέσω μιας ανώμαλης όξυνσης σε περιπτώσεις με παρόμοια συμπτώματα – οι επιστήμονες σπεύδουν να κατανοήσουν τη νέα ασθένεια. Τι είδους μικρόβιο προκαλεί τη μόλυνση; Από πού προέρχεται; Πώς εξαπλώνεται η λοίμωξη; Ποια είναι τα συμπτώματά της; Ποια φάρμακα θα μπορούσαν να την αντιμετωπίσουν; Στην τρέχουσα επιδημία, η επιστήμη έχει προχωρήσει με φρενήρη ταχύτητα. Τα γονιδιώματα των ιών μπαίνουν σε μία αλληλουχία και αναλύονται γρήγορα, οι αριθμοί περιστατικών και θανάτων εμφανίζονται καθημερινά και εκατοντάδες προτυπωμένα στοιχεία κοινοποιούνται καθημερινά.

Μερικοί επιστήμονες σπεύδουν στα μικροσκόπια και τα εργαστήριά τους για να μελετήσουν μια νέα λοίμωξη. Άλλοι ορμούν στους υπολογιστές και στον κώδικα. Μερικές μετρήσεις μπορούν να χαρακτηρίσουν ένα νέο ξέσπασμα, να καθοδηγήσουν τις απαντήσεις στη δημόσια υγεία και να ενημερώσουν περίπλοκα μοντέλα που μπορούν να προβλέψουν την τροχιά της επιδημίας. Οι επιδημιολόγοι των λοιμώξεων, οι μαθηματικοί βιολόγοι, οι βιοστατιστικοί και άλλοι με παρόμοια εμπειρία προσπαθούν να απαντήσουν σε αρκετές ερωτήσεις: Πόσο γρήγορα εξαπλώνεται η λοίμωξη; Ποιο κλάσμα μετάδοσης πρέπει να μπλοκαριστεί για τον έλεγχο της εξάπλωσης; Πόσο καιρό είναι κάποιος μολυσματικός; Πόσο πιθανό είναι τα μολυσμένα άτομα να νοσηλευτούν ή να πεθάνουν;

(περισσότερα…)

Η κατανόηση της ενέργειας ως μια λεπτή έννοια: Ένα μοντέλο για τη διδασκαλία και την εκμάθηση της ενέργειας

  • Του Eugene Hecht
  • Από το American Journal of Physics

ΠΕΡΙΛΗΨΗ

Μια μελέτη των εγχειριδίων φυσικής από τη δεκαετία του 1860 μέχρι σήμερα αποκαλύπτει τις αδυναμίες της σύγχρονης προσέγγισής μας στη διδασκαλία της έννοιας της ενέργειας. Σε απάντηση, το παρόν έγγραφο προσφέρει ένα συντονισμένο σύνολο εννοιολογικών ορισμών της δύναμης, του έργου και της ενέργειας, που μπορεί να προσφέρει μια κάπως πιο προσιτή βάση για την ανάπτυξη του θέματος παιδαγωγικά.

Ι. ΕΙΣΑΓΩΓΗ

Αυτή καθ’ εαυτή η πραγματεία δεν αφορά στη διδασκαλία μεθοδολογίας. Αντιθέτως, ασχολείται πρωτίστως με τρία συναφή ζητήματα: Πρώτον, δείχνει ότι η σημερινή ευρέως διαδεδομένη κατανόηση της “ενέργειας” είναι ανεπαρκής για διάφορους λόγους. Δεύτερον, υποστηρίζει ότι η δυναμική ενέργεια είναι ένα πολύ χρήσιμο λογιστικό εργαλείο και όχι μια εμπειρική μετρήσιμη ποσότητα. Και τρίτον, παρέχει έναν πιο σύγχρονο τρόπο για να εκτιμήσουμε τι είναι συνολικά η ενέργεια. Ανεξάρτητα από το πόσο αποτελεσματικά διδάσκουμε ξεπερασμένες συνταγές, αποτυγχάνουμε. Ανεξάρτητα από το πόσο διεξοδικά επιδιώκουμε να μεταφέρουμε τα ουσιώδη συμπεράσματα της έρευνας στις ιδέες των μαθητών και στις παιδαγωγικές προσεγγίσεις, αν οι έννοιες που προτείνουμε είναι μακρά ξεπερασμένες, δεν μπορούμε να ανταποκριθούμε στις ευθύνες μας. Είναι καιρός να αναβαθμιστεί η απλοϊκή αντίληψη του 19ου αιώνα για την «ενέργεια» και στη συνέχεια να εστιάσουμε στις τεχνικές διδασκαλίας της.

Στον πραγματικό κόσμο, όλα βρίσκονται σε κίνηση από τα άτομα μέχρι τους γαλαξίες. Τίποτα δεν είναι πραγματικά στατικό. Οι γέφυρες διαστέλλονται και συστέλλονται, οι ουρανοξύστες κουνιούνται, οι πλανήτες περιστρέφονται. Όταν πατάτε στο πάτωμα, το δάπεδο βουλιάζει, αλλάζει κι αυτό. Μόνο όταν η καθαρή δύναμη που ασκείται σε ένα υλικό αντικείμενο είναι μηδέν, δεν θα υπάρξει καμία αλλαγή στην κατάστασή του. Σε μεγάλο βαθμό, η Φυσική μελετά γεγονότα, μελετά μεταβολές, μεταβολές που έχουν συμβεί και μεταβολές που δεν έχει ακόμη συμβεί. Για να αρχίσουμε να διευκρινίζουμε και να ολοκληρώνουμε τις αντιλήψεις μας για τις έννοιες της ενέργειας, της δύναμης, του έργου και της μάζας, θα χρησιμοποιήσουμε τις ακόμα πιο θεμελιώδεις ιδέες της ύλης, της αλληλεπίδρασης και της μεταβολής.

Θα αποτελούσε έκπληξη για κάποιους αν μάθαιναν ότι εμείς οι φυσικοί δεν έχουμε ακόμα κοινά αποδεκτούς ορισμούς των βασικών μας εννοιών, όπως η ενέργεια που είναι μία από αυτές. Παρά τις προφανείς δυσκολίες, ο στόχος εδώ είναι να διαμορφώσουμε έναν ορισμό εργασίας που να ασχολείται με το τι είναι η ενέργεια. Έναν ορισμό που μπορεί να χρησιμεύσει ως το θεμέλιο του διδακτικού λόγου. Η μέριμνα δεν είναι απλώς να γράφουμε εξισώσεις όπως KE =1/2mv2 ή PE = mgh (και οι δύο μόνο προσεγγίσεις) που φαίνεται να μας λένε πώς μπορούμε να μετρήσουμε συγκεκριμένες μορφές ενέργειας, αλλά πέρα ​​από αυτό, τι ακριβώς μετράμε; Τι έχει η σφαίρα όπλου όταν έχει ενέργεια 1000 J, είτε KE είτε PE;

Ασφαλώς, αν μπορέσουμε να καταφέρουμε να κατανοήσουμε την ενέργεια σε βαθύτερο επίπεδο από ό, τι έχει γίνει μέχρι σήμερα στα σύγχρονα εγχειρίδια, θα είμαστε σε καλύτερη θέση να διδάξουμε τις λεπτότητες, που σχετίζονται με την έννοια, με έναν πιο ενιαίο τρόπο. Αλλά πρώτα πρέπει να αναγνωρίσουμε και να είμαστε πρόθυμοι να αντιμετωπίσουμε τις σημαντικές ανεπάρκειες των γνωστών συνταγών μας. Είναι σαφές ότι κατορθώσαμε να κάνουμε με επιτυχία φυσική χωρίς να είμαστε υπερβολικά προσεκτικοί σχετικά με τον ορισμό των θεμελιωδών αρχών, αλλά η διδασκαλία της φυσικής χωρίς εννοιολογική αυστηρότητα είναι ένα διαφορετικό θέμα.

Γνωρίζουμε ότι η φυσική είναι μια διαρκώς εξελισσόμενη δυναμική δημιουργία και έτσι ένας ορισμός οποιασδήποτε θεμελιώδους έννοιας – που να αντέχει στο χρόνο, όπως θα έπρεπε – πρέπει να είναι αρκετά ευρύς ώστε να επιτρέπει μελλοντική ανακάλυψη και εξέλιξη. Επιπλέον, πρέπει να αναμένουμε ότι η χρήση που έγινε κάποτε, θα απαιτεί ενημέρωση μετά από 160 χρόνια. Βεβαίως, θα ήταν αφελές να πιστεύουμε ότι η “ενέργεια” θα μπορούσε να έχει καθοριστεί ικανοποιητικά πριν ο Einstein (1907) μας δώσει E_0 = mc^2 ή πριν η Noether (1915) επινοήσει το θεώρημά της.

Ακόμη και μια συνοπτική μελέτη των εγχειριδίων φυσικής από τη δεκαετία του 1860 και μετά καθιστά εμφανές ότι παρουσιάζουν την ενέργεια σχεδόν με τον ίδιο τρόπο για όλο αυτό το διάστημα, παρά τα όσα έχουμε μάθει εν τω μεταξύ. Οι συνέπειες αυτού υπογραμμίστηκαν από τον βραβευμένο με Νόμπελ Ρίτσαρντ Φ. Φέινμαν, ο οποίος επεσήμανε (1963): “Είναι σημαντικό να συνειδητοποιήσουμε ότι στη φυσική σήμερα δεν έχουμε καμία γνώση της ενέργειας.” Τώρα πάνω από 50 χρόνια αργότερα και εμείς – η κοινότητα των φυσικών – δεν έχουμε ακόμη επιλύσει αυτό το δίλημμα. Η ιδέα της ενέργειας είναι κεντρική σε όλη τη φυσική, και όμως κάποιος θα δυσκολευτεί να βρει ένα εγχειρίδιο το οποίο να παρέχει έναν αποτελεσματικό ορισμό πέρα ​​από τις συνήθεις ταυτολογίες. Οι πιο ευρέως αποδεκτοί μας ορισμοί, αυτοί όσον αφορά στο «έργο», είναι, όπως θα δούμε, όλοι σταθερά βυθισμένοι στον 19ο αιώνα και όλοι είναι απλοϊκά ανακυκλούμενοι.

Παρ ‘όλα αυτά, οι εγγενείς ελλείψεις στον ορισμό της ενέργειας με όρους έργου, είναι ευρέως απροσδόκητες και αυτή η λανθασμένη προσέγγιση προσφέρεται συνήθως στα σύγχρονα εγχειρίδια και επομένως μέσα σε όλες τις τάξεις παγκοσμίως. Από τη δεκαετία του ’70, έχουν δημοσιευθεί δεκάδες εξαιρετικές δημοσιεύσεις σχετικά με τα θέματα της δύναμης, του έργου, της ενέργειας και της μάζας. Ως αποτέλεσμα αναμφίβολα, οι συγγραφείς βιβλίων, αρκετά λογικά, έχουν γίνει πιο προσεκτικοί και έμπειροι στην ενασχόλησή τους με την ενέργεια, δυστυχώς όμως, συνηθέστερα, χωρίς ποτέ να ασχοληθούν με το τι είναι ενέργεια. Τυπικά, καθορίζουν τόσο την κινητική ενέργεια όσο και τη δυναμική ενέργεια από την άποψη του έργου – κάτι το οποίο, σύντομα θα δούμε, είναι απλοϊκή προσέγγιση – και στη συνέχεια σύντομα μεταπηδούν στο συμπέρασμα, ότι, έχοντας ορίσει την KE και PE κατά κάποιο τρόπο, ορίζουμε και την ίδια την ενέργεια. Δεν είναι όμως έτσι. Όπως η διάκριση μεταξύ ενός κοτόπουλου και ενός βατράχου δεν καθορίζει τι είναι η ζωή.

(περισσότερα…)

Περνώντας τη διαχωριστική γραμμή των κβάντων

  • Του Tim Folger
  • Από το Scientific American

Το σύμπαν σύμφωνα με τη κβαντική μηχανική είναι περίεργο και πιθανολογικό, αλλά η καθημερινή μας πραγματικότητα φαίνεται καλά στερεωμένη. Νέα πειράματα στοχεύουν να ερευνήσουν όπου-και γιατί- το ένα βασίλειο περνάει μέσα στο άλλο.

Τα περισσότερα από τα χειροτεχνήματα του Simon Gröblacher είναι αόρατα με γυμνό μάτι. Μία από τις μηχανικές κατασκευές του στο εργαστήριό του στο Πανεπιστήμιο Τεχνολογίας Delft στην Ολλανδία, έχουν μήκος μόνο μερικά εκατομμυριοστά του μέτρου – όχι πολύ μεγαλύτερο από ένα βακτήριο – και πάχος 250 νανόμετρα, περίπου  ένα χιλιοστό του πάχους ενός φύλλου χαρτιού.Ο  Gröblacher χωρίς αμφιβολία θα μπορούσε να συνεχίσει να συρρικνώνει τις κατασκευές του, αλλά έχει διαφορετικό στόχο: θέλει να μεγεθύνει τα πράγματα, όχι τα σμικρύνει. «Αυτό που προσπαθούμε να κάνουμε είναι  πράγματα που υπάρχουν, να γίνουν πραγματικά μεγάλα», λέει, καθώς φέρνει εικόνες του υλικού στον υπολογιστή του. Λάβετε υπόψη ότι για τον Gröblacher, έναν πειραματικό φυσικό, «πραγματικά, πραγματικά μεγάλα» σημαίνει κάτι μόλις ελάχιστα ορατό χωρίς μικροσκόπιο, «ένα χιλιοστό του χιλιοστού μέγεθος.»

Με την εργασία σε αυτή τη μικρή κλίμακα, ο Gröblacher ελπίζει να απευθύνει το ειδικό ερώτημα: Μπορεί ένα μόνο μακροσκοπικό αντικείμενο να βρίσκεται την ίδια στιγμή σε δύο μέρη; Θα μπορούσε κάτι από το μέγεθος μιας κεφαλής καρφίτσας, ας πούμε, να υπάρχει τόσο εδώ όσο και εκεί την ίδια στιγμή; Αυτή η φαινομενικά αδύνατη κατάσταση είναι στην πραγματικότητα ο κανόνας για τα άτομα, τα φωτόνια και όλα τα άλλα σωματιδία. Σύμφωνα με τους σουρεαλιστικούς νόμους της κβαντικής θεωρίας, η πραγματικότητα στο πιο βασικό της επίπεδο αντιμάχεται τις παραδοχές της κοινής σκέψης: Σωματίδια δεν έχουν σταθερές θέσεις, ενέργεια ή οποιαδήποτε άλλη συγκεκριμένη ιδιότητα – τουλάχιστον όσο δεν τα κοιτάζει κανείς. Υπάρχουν σε πολλές καταστάσεις ταυτόχρονα.

Αλλά για τους λόγους που οι φυσικοί δεν καταλαβαίνουν, η πραγματικότητα που βλέπουμε είναι διαφορετική. Ο κόσμος μας – ακόμα και τα μέρη του που δεν μπορούμε να παρατηρήσουμε άμεσα – φαίνεται ξεκάθαρα μη κβαντικός. Πραγματικά μεγάλα πράγματα – που σημαίνει οτιδήποτε από έναν ιό και πάνω – εμφανίζονται πάντα σε ένα και μόνο ένα μέρος. Υπάρχει μόνο ένας Gröblacher που μιλάει σε έναν δημοσιογράφο με χαρά, που κρατάει σημειώσεις στο εργαστήριο του Delft. Και εκεί υπάρχει ένα μυστήριο: Γιατί, αν όλα είναι χτισμένα σε μια κβαντική θολούρα ύλης και ενέργειας, δεν βιώνουμε την κβαντική παραξενιά στον εαυτό μας; Πού συμβαίνει το κβαντικό παγκόσμιο τέλος και αρχίζει ο λεγόμενος κλασικός κόσμος της Νευτώνειας φυσικής; Υπάρχει στην πραγματικότητα ρήγμα, μια κλίμακα πέρα​ από την οποία να παύουν να υπάρχουν τα κβαντικά αποτελέσματα; Ή η κβαντική μηχανική βασιλεύει παντού και είμαστε κάπως τυφλοί σε αυτό; (περισσότερα…)

Πώς τα πράγματα αποκτούν το βάρος τους: Η φύση της μάζας

  • Του Don Lincoln
  • Από το “The Physics Teacher”

Περίληψη

Η φυσική είναι ένα βαρύ αντικείμενο, γεμάτο ουσία και σοβαρότητα. Επομένως, είναι ίσως εντελώς λογικό, ένα κεντρικό ζήτημα προσήλωσης να είναι η μάζα. Αλλά τι είναι η μάζα στην πραγματικότητα; Ποια είναι η προέλευση και η φύση αυτού του πιο ουσιώδους στοιχείου του κόσμου γύρω μας; Και υπάρχουν άραγε κάποιες εκπλήξεις, που θα μπορούσαμε να δούμε, καθώς θα σκάβουμε βαθύτερα σε αυτό το ερώτημα; Σε αυτό το άρθρο, ελπίζω να εκπλήξω κάθε αναγνώστη τουλάχιστον μία φορά.

Όλοι έχουμε μια διαισθητική κατανόηση της μάζας. Είναι το ποσό των “υλικών” που αποτελούν κάτι. Ενώ οι φυσικοί μπορεί να έχουν μια πιο ξεχωριστή εκτίμηση του θέματος, η καθημερινή μας διαίσθηση για τη μάζα είναι στενά συνδεδεμένη με την έννοια του ξαδέλφου του βάρους. Τα πιο μαζικά πράγματα ζυγίζουν περισσότερο. Η σύνδεση βάρους / μάζας άρχισε να γίνεται κατανοητή κατά τη διάρκεια του μεσαίου μέρους της τελευταίας χιλιετίας και αποδεικνύεται ότι είναι ένα κρίσιμο και, μερικές φορές, απροσδόκητο χαρακτηριστικό της δομής του σύμπαντος. Θα επιστρέψω σε αυτό αργότερα.

Η μάζα παίζει ρόλο τόσο στην αδράνεια, δηλαδή στην τάση ενός αντικειμένου να μετατοπιστεί ή να παραμείνει ακίνητο, όσο και στο βάρος, που είναι η δύναμη που ασκείται σε ένα αντικείμενο λόγω βαρύτητας. Ο Αριστοτέλης υποστήριξε τον 4ο αιώνα π.Χ. ότι τα αντικείμενα έπεφταν με ταχύτητα ανάλογη προς τη μάζα τους. (Και με τον όρο μάζα εννοούσε πραγματικά αυτό που τώρα αποκαλούμε βάρος.)

Τα πειράματα του Galileo (Εικόνα 1) άλλαξαν όλα αυτά στα τέλη του 16ου αιώνα. Το 1589-1592, ο Galileo μελέτησε τον τρόπο με τον οποίο τα διάφορα αντικείμενα πέφτουν υπό την επίδραση της βαρύτητας και διαπίστωσε ότι έπεφταν ανεξάρτητα από τη μάζα τους. Αυτό επιβεβαίωσε τη διαίσθησή του, την οποία σχημάτισε μέσω ενός πειράματος σκέψης. Κάθε στερεό αντικείμενο μπορεί να φανταστείτε ότι αποτελείται από δύο ξεχωριστά αντικείμενα, το ένα να έχει το διπλάσιο βάρος του άλλου. Όταν ρίχνετε το ενιαίο βάρος και τα δύο κομμάτια πέφτουν με τον ίδιο ρυθμό. Επιπλέον, εάν τα δύο βάρη διαχωρίστηκαν πράγματι, ενώθηκαν με ένα νήμα και στη συνέχεια έπεσαν, φανταστείτε ότι θα πέσουν μαζί και όχι με διαφορετικούς ρυθμούς. Με αυτό το σκεπτικό, περίμενε να διαψεύσει τον Αριστοτέλη, κάτι που τελικά το παρατήρησε.

Εικ. 1. Οι πρώτες πραγματικές ιδέες για τη σύνδεση μεταξύ μάζας, βάρους και κίνησης καταγράφηκαν από τον Galileo.

Ο σπουδαστής του, Vincenzo Viviani, περιέγραψε τη βιογραφία του Galileo το 1654 και είναι εκεί όπου αναφέρθηκε η ιστορία του Galileo που ρίχνει μπάλες από τον Πύργο της Πίζας. Δεν υπάρχει τέτοια ιστορία στα γραπτά του Galileo. Μάλλον στο έργο του Δύο Νέες Επιστήμες, που δημοσιεύθηκε το 1638, ο Γαλιλαίος περιέγραψε τα πειράματα χρησιμοποιώντας μια χάλκινη μπάλα και μια ξύλινη ράβδο. Ενώ οι σύγχρονοι καθηγητές φυσικής θα αναγνωρίσουν ότι μια σωστή αντιμετώπιση αυτής της κατάστασης απαιτεί να λαμβάνονται υπόψη οι περιστροφικές ιδιότητες του αντικειμένου, τα δύο βασικά συμπεράσματα του Galileo ήταν ότι αντικείμενα με τις ίδιες διαστάσεις παρουσιάζουν πανομοιότυπη κίνηση (ανεξάρτητα από τη μάζα τους) και ότι η απόσταση που διανύει το αντικείμενο είναι ανάλογη του τετραγώνου του χρόνου της κίνησης. (περισσότερα…)

Οι σκέψεις του Θεού: Πρακτικά βήματα προς μία Θεωρία των Πάντων

  • Του Don Lincoln, Fermilab, Chicago
  • Από το The Physics Teacher Magazine

Περίληψη

Το 1922, ο Αϊνστάιν μιλούσε με τη νεαρή Esther Salaman κατά τη διάρκεια μιας μεγάλης βόλτας. Αυτή του έλεγε για τα όνειρα και τους στόχους της και αυτός μοιραζόταν μερικές από τις σκέψεις του. Ανάμεσα στις σκέψεις του ταξιδιού, περιέγραψε τον πυρήνα της κατευθυντήριας πνευματικής αρχής του, όταν είπε, “Θέλω να ξέρω πώς ο Θεός δημιούργησε τον κόσμο [wie sich Gott Die Welt beschaffen]. Δεν με ενδιαφέρει το ένα ή το άλλο φαινόμενο, στο φάσμα του ενός ή του άλλου στοιχείου. Θέλω να ξέρω τις σκέψεις του. Τα υπόλοιπα είναι απλές λεπτομέρειες.”

Δεν έχει σημασία η γνώμη σου για τη θρησκεία, αν είσαι ένας ένθερμος οπαδός της ή ένας απολογητής της αθεΐας. Η φράση “οι σκέψεις του Θεού” είναι μία απολαυστική ποιητική έκφραση. Αντιπροσωπεύει, με ένα μεταφορικό τρόπο, τίποτα λιγότερο από την κατανόηση των βαθύτερων και πιο θεμελιωδών νόμων του σύμπαντος. Συγκεκριμένα, η ελπίδα είναι ότι κάποια μέρα θα είμαστε σε θέση να εξηγήσουμε όλο το καλειδοσκόπιο της ύλης και των φαινομένων που βλέπουμε καθώς κοιτάζουμε γύρω μας, όπως προκύπτουν από ένα μικρό αριθμό δομικών στοιχείων και ίσως με μία ενιαία δύναμη. Αυτό αναμφίβολα θα είναι ένα εκπληκτικό επίτευγμα, αλλά είναι εξαιρετικά απίθανο ότι θα συμβεί σύντομα. Αντ ‘αυτού, είναι πιο πιθανό ότι θα έχουμε προοδευτικά επιτεύγματα, τα οποία μια μέρα θα μπορούσαν να μας οδηγήσουν στην επιτυχία. Σε αυτό το άρθρο, θα ήθελα να επανεξετάσουμε ό,τι  ξέρουμε μέχρι στιγμής και να επιστήσω την προσοχή σας σε κενά στις τρέχουσες θεωρίες μας, που μπορεί να παρέχουν ενδείξεις για το επόμενο μεγάλο βήμα. Αυτός είναι ο πυρήνας της σκέψης που με ώθησε σ’ αυτό το άρθρο. Αντί να κάνουμε εικασίες για μια απίθανη και φαντεζί προώθηση της θεωρίας, το άρθρο επικεντρώνεται σε ρεαλιστικές προόδους που θα μπορούσαμε να κάνουμε στα επόμενα λίγα χρόνια.

Σε γενικές γραμμές, υπάρχουν δύο παράλληλα και ως επί το πλείστον ανεξάρτητα βήματα για την κατανόηση του σύμπαντος. Το πρώτο είναι μια θεωρία που διέπει τον κβαντικό κόσμο και το δεύτερο είναι μια θεωρία της βαρύτητας που εξηγεί τον Κόσμο σε μεγαλύτερη κλίμακα. Κάνοντας ένα άλμα προς τα μπρος ώστε να γνωρίζετε για τι πράγμα μιλάω, αυτά τα δύο εξαιρετικά πνευματικά επιτεύγματα είναι το Καθιερωμένο Μοντέλο της σωματιδιακής φυσικής και η Θεωρίας της Γενικής Σχετικότητας του Αϊνστάιν. Εύχομαι να μπορέσω να σκιαγραφίσω εν συντομία τις δύο από αυτές ιδέες, πριν μιλήσω για τις προκλήσεις και τις ενδείξεις που βασίζονται οι επιστήμονες  για να κάνουν το επόμενο βήμα προς τη θεωρία των πάντων.

Το Καθιερωμένο Μοντέλο

Το Καθιερωμένο Μοντέλο είναι το αμάλγαμα πολλών από τις καλύτερες γνωστές θεωρίες. Περιλαμβάνει μία από τις πιο εντυπωσιακές επιστημονικές ανακαλύψεις, ειδικότερα τις εξισώσεις του Maxwell, οι οποίες ένωσαν σε μία ενιαία θεωρία τον ηλεκτρισμό και το μαγνητισμό, αλλά και εξήγησαν την κλασική θεωρία του φωτός. Το Καθιερωμένο Μοντέλο περιλαμβάνει επίσης την κβαντική μηχανική, η οποία εξήγησε τελικά τα πρότυπα που φαίνονται στον χημικό περιοδικό πίνακα και ξεκαθάρισε πράγματα, όπως το φάσμα του φωτός που εκπέμπεται από τα λαμπερά αέρια και τις λεπτομέρειες για το πώς λειτουργούν πραγματικά οι ατομικοί και χημικοί δεσμοί.

Η ιστορία της κβαντικής μηχανικής έχει ειπωθεί πολλές φορές στο παρελθόν. Οι Planck, deBroglie, Schrödinger, Heisenberg, Bohr και όλα τα άλλα γνωστά ονόματα, επεξεργάστηκαν την κβαντισμένη φύση του ατόμου, ενώ οι Hertz, Young, Einstein και άλλοι, ξεχώρισαν τη φύση του φωτονίου. Οι Thompson, Rutherford, Chadwick και οι σύγχρονοί τους, ανακαλύψαν τα συστατικά του πυρήνα του ατόμου.

Εικ. 1.Το Καθιερωμένο Μοντέλο της σωματιδιακής φυσικής αποτελείται από έξι κουάρκ, έξι λεπτόνια, τέσσερα σωματίδια μεταφοράς δύναμης και το πεδίο Higgs που δίνει μάζα σε όλα.

Αυτό το πάνθεον των μεγάλων μυαλών μάς δίδαξε ότι όλη η χημεία θα μπορούσε να εξηγηθεί ως ένας ατελείωτος συνδυασμός των τριών σωματιδίων: πρωτονίων, νετρονίων και ηλεκτρονίων, που διέπονται από τους κανόνες της κβαντικής μηχανικής και της δύναμης του ηλεκτρομαγνητισμού. Έτσι, αυτό ήταν ήδη μία απίστευτη απλούστευση στην κατανόηση μας για τον κόσμο. Τρία σωματίδια, μία δύναμη και μερικές κβαντικές αρχές εξήγησαν τη συμπεριφορά της ύλης.

(περισσότερα…)

Η Ειδική Θεωρία της Σχετικότητας

Του Richard P. Feynman

Ο Richard P. Feynman, ήταν ένας από τους σημαντικότερους θεωρητικούς φυσικούς του 20ου αιώνα και τιμήθηκε με το βραβείο Νόμπελ το 1965 για τη συμβολή του στην Κβαντική Ηλεκτροδυναμική, Οι διαλέξεις του έμειναν στην ιστορία της επιστήμης ως άριστο παράδειγμα εκλαΐκευσης σπουδαίων φυσικών εννοιών, με αποκορύφωμα την επινόηση των “διαγραμμάτων Φάινμαν”, με τα οποία απλοποιήθηκαν οι υπολογισμοί για την αλληλεπίδραση των στοιχειωδών σωματιδίων.

Μία από τις διάσημες διαλέξεις του Φάινμαν ήταν η διάλεξή του για την Ειδική Θεωρία της Σχετικότητας, η οποία δημοσιεύτηκε το 1964, ένα χρόνο δηλαδή πριν του απενεμηθεί το Βραβείο Νόμπελ, στο αμερικάνικο περιοδικό The Physics Teacher.

Είναι μία ευκαιρία για τους φυσικούς να φρεσκάρουν τις γνώσεις τους, αλλά και κάθε ένας που διαθέτει ικανοποιητικό μαθηματικό μπακράουντ και ενδιαφέρον για τις φυσικές επιστήμες να έρθει σε απαφή με μία από τις μεγαλύτερες επιστημονικές θεωρίες.

 

Η Αρχή της Σχετικότητας

Για περισσότερα από 200 χρόνια πίστευαν ότι οι εξισώσεις της κίνησης που διατυπώθηκαν από τον Νεύτωνα περιέγραφαν σωστά τη φύση, και  όταν ανακαλύφθηκε το πρώτο σφάλμα σε αυτούς τους νόμους, είχε ήδη ανακαλυφθεί και ο τρόπος για να διορθωθεί. Τόσο το λάθος όσο και η διόρθωσή του ανακαλύφθηκαν από τον Άινστάιν το 1905.
Ο Δεύτερος νόμος του Νεύτωνα, το οποίο έχουμε εκφράσει με την εξίσωση

    \[ F=\frac{d(mv)}{dt} \]

διατυπώθηκε με την σιωπηρή παραδοχή ότι η μάζα m είναι σταθερή, αλλά τώρα ξέρουμε ότι αυτό δεν είναι αλήθεια και ότι η μάζα ενός σώματος αυξάνεται με την ταχύτητα. Στο διορθωμένο τύπο του Αϊνστάιν το m παίρνει την τιμή

 

(1)   \begin{equation*}   m=\frac{m_0}{\sqrt{1-v^2/c^2}} \end{equation*}

 

όπου η “μάζα ηρεμίας” m0 αντιπροσωπεύει τη μάζα ενός σώματος, όταν αυτό δεν κινείται και c η ταχύτητα του φωτός, η οποία είναι περίπου 3×105 km/s.
Για εκείνους που θέλουν να μάθουν απλώς όσα χρειάζονται για να μπορούν να λύνουν προβλήματα, αυτό είναι αρκετό για τη θεωρία της σχετικότητας. Αλλάζουν απλώς τους νόμους του Νεύτωνα εισάγοντας έναν παράγοντα διόρθωσης στη μάζα. Από τον ίδιο τον τύπο, είναι εύκολο να δούμε ότι αυτή η αύξηση της μάζας είναι πολύ μικρή σε κανονικές συνθήκες. Ακόμη κι αν η ταχύτητα είναι τόσο μεγάλη όσο ενός δορυφόρου, που περιστρέφεται γύρω από τη Γη με 8km/ sec, τότε υ/c = 8 / 300.000. Αντικαθιστώντας στον τύπο γίνεται φανερό ότι η διόρθωση στη μάζα είναι της τάξεως μόνο του ενός προς δύο με τρία δισεκατομμυριοστά, η οποία είναι αδύνατον να παρατηρηθεί. Στην πραγματικότητα, η ορθότητα του τύπου έχει επιβεβαιωθεί πλήρως από την παρατήρηση πολλών ειδών σωματιδίων, που κινούνται με ταχύτητες που φθάνουν σχεδόν την ταχύτητα του φωτός. Ωστόσο, επειδή το αποτέλεσμα είναι συνήθως πολύ μικρό, είναι αξιοσημείωτο το γεγονός ότι ανακαλύφθηκε θεωρητικά πριν ανακαλυφθεί πειραματικά. Εμπειρικά, σε αρκούντως υψηλή ταχύτητα, το αποτέλεσμα είναι πολύ μεγάλο, αλλά δεν ανακαλύφθηκε μ’ αυτόν τον τρόπο. Ως εκ τούτου, είναι ενδιαφέρον να δούμε πώς ένας νόμος όπου εμπλέκονται τόσο λεπτές τροποποιήσεις (κατά τη στιγμή που ανακαλύφθηκε για πρώτη φορά) ήλθε στο φως από έναν συνδυασμό πειραμάτων και εύλογων συλλογισμών. Συνεισφορές στην ανακάλυψη έγιναν από έναν αριθμό ανθρώπων, το τελικό αποτέλεσμα των εργασιών των οποίων ήταν η ανακάλυψη του Αϊνστάιν.

Υπάρχουν πραγματικά δύο θεωρίες της σχετικότητας του Αϊνστάιν. Αυτό το κεφάλαιο ασχολείται με την Ειδική Θεωρία της Σχετικότητας, η οποία χρονολογείται από το 1905. Το 1915 ο Αϊνστάιν δημοσίευσε μια πρόσθετη θεωρία, που ονομάζεται Γενική Θεωρία της Σχετικότητας. Η τελευταία αυτή πραγματεύεται μία θεωρία με την επέκταση της Ειδικής Θεωρίας στην περίπτωση του νόμου της βαρύτητας. Δεν θα συζητήσουμε τη Γενική Θεωρία εδώ.

Η αρχή της σχετικότητας αναφέρθηκε για πρώτη φορά από το Νεύτωνα, σε ένα από τα πορίσματά του στους νόμους της κίνησης:Οι κινήσεις των σωμάτων που περιλαμβάνονται σε ένα συγκεκριμένο χώρο είναι ίδιες μεταξύ τους, είτε ο χώρος είναι σε κατάσταση ηρεμίας ή κινείται προς τα εμπρός ευθύγραμμα και ομαλά.” Αυτό σημαίνει, για παράδειγμα, ότι αν ένα διαστημόπλοιο κινείται ευθύγραμμα και ομαλά, όλα τα πειράματα που εκτελούνται στο διαστημόπλοιο και όλα τα φαινόμενα που συμβαίνουν στο διαστημόπλοιο, θα εμφανίζονται τα ίδια όπως εάν το διαστημόπλοιο δεν κινείται, υπό την προϋπόθεση, φυσικά, ότι δεν βλέπεις προς τα έξω. Αυτό είναι το νόημα της αρχής της σχετικότητας. Είναι μια αρκετά απλή ιδέα και το μόνο ερώτημα που τίθεται είναι, αν είναι αλήθεια, ότι όλα τα πειράματα που εκτελούνται μέσα σε ένα κινούμενο σύστημα και οι νόμοι της φυσικής, είναι ίδιοι, όπως θα ήταν, αν το σύστημα ήταν ακίνητο. Ας εξετάσουμε πρώτα κατά πόσον οι νόμοι του Νεύτωνα παραμένουν οι ίδιοι σε κινούμενο σύστημα.

Σχετικότητα 1

Εικ. 1. Δύο συστήματα αναφοράς που κινούνται με σταθερή σχετική μεταξύ τους ταχύτητα κατά μήκος του άξονα x.


Ας υποθέσουμε ότι ο Moe κινείται προς τη διεύθυνση x με σταθερή ταχύτητα u και μετρά τη θέση ενός σταθερού σημείου Ρ, που φαίνεται στην Εικ. 1. Η  “x-απόσταση” του Moe από το σημείο P στο σύστημα συντεταγμένων του παριστάνεται με x΄.  Ο Joe είναι σε κατάσταση ηρεμίας και μετρά την θέση του ίδιου σημείου, στο δικό του σύστημα ως x. Η σχέση των συντεταγμένων στα δύο συστήματα είναι σαφής από το διάγραμμα. Μετά από χρόνο t η αρχική θέση του Moe έχει μετακινηθεί απόσταση ut, και εάν τα δύο συστήματα αρχικά συνέπιπταν θα έχουμε
:
(περισσότερα…)

Η φύση του Ηλεκτρονίου

Η αναζήτηση της φύσης του ηλεκτρονίου και της φύσης του φωτός αποτέλεσαν δύο από τα μεγαλύτερα προβλήματα της Φυσικής και λαμπρό πεδίο ερευνών όλων των μεγάλων επιστημόνων.  Ο καθηγητής-ερευνητής Don Licoln του Fermilab στο Σικάγο, ΗΠΑ, μας έχει δώσει πολλά άρθρα με τα οποία εκλαϊκεύει σύνθετες έννοιες της φυσικής, έτσι ώστε να δίνει την ευκαιρία σε όλους όσους διαθέτουν ένα σχετικά ανεκτό επίπεδο γνώσεων, να μπορούν να αντιλαμβάνονται τους βαθύτερους μηχανισμούς που διέπουν τα φυσικά φαινόμενα.

Στο παρακάτω άρθρο αναλύει σε σημαντικό βάθος τη φύση του ηλεκτρονίου, για το οποίο εκείνο που όλοι γνωρίζουμε είναι ότι πρόκειται για ένα μικρότατο σωματίδιο, συστατικό του κάθε ατόμου, έχει αρνητικό φορτίο και περιστρέφεται γύρω από τον πυρήνα. Πόσο κοντά στην πραγματικότητα είμαστε; Μήπως μπροστά μας έχουμε ένα πολύ πιο σύνθετο αντικείμενο, για το οποίο πολλά γνωρίζουμε, αλλά ακόμη πιο πολλά έχουμε να μάθουμε;

  • Του Don Licoln, καθηγητή-ερευνητή στο Fermilab, Chicago
  • Από το The Physics Teacher Magazine

Ο Winston Churchill είπε κάποτε ότι η Ρωσία ήταν ένα αίνιγμα τυλιγμένο στο μυστήριο μέσα σε ένα αίνιγμα. Αν το “Εγγλέζικο Μπουλντόγκ” ήταν φυσικός, θα μπορούσε να μιλήσει για κάτι άλλο, εκτός από τους Σλάβους συντρόφους μας. Θα μπορούσε να μιλήσει για το ηλεκτρόνιο.

Μπορεί να φαίνεται περίεργο να σκεφτούμε το ηλεκτρόνιο ως ένα μυστηριώδες σωματίδιο. Εξ άλλου, εκπαιδευτικοί που διδάσκουν εισαγωγική φυσική, διδάσκουν παντού τους μαθητές για το φορτίο και το ρεύμα και  κάνουν εργαστήρια για τον υπολογισμό του λόγου φορτίου προς μάζα του σωματιδίου. Αν είναι αρκετά εύκολο να καταλάβουμε ότι μπορούμε να παρουσιάσουμε τις τεχνικές λεπτομέρειες του σωματιδίου στους πρωτοετείς φοιτητές της φυσικής, τότε πόσο μυστηριώδες μπορεί να είναι;

Βέβαια, πιθανώς τώρα να γύρισαν οι σκέψεις σας στην κβαντική των ηλεκτρονίων και την εξίσωση του Schrödinger και στο αν οι γάτες είναι ζωντανές ή νεκρές, και ίσως αρχίσετε να θυμόσαστε ότι το ηλεκτρόνιο δεν μας έχει πει όλες τις ιστορίες του. Και η ιστορία της κβαντικής μηχανικής είναι πλέον παλιά, σχεδόν έναν αιώνα. Η επιστήμη έχει προχωρήσει και οι ερευνητές έχουν εγκαταλείψει τις απλούστερες κβαντικές παραστάσεις του ηλεκτρονίου για τις πιο προηγμένες της σχετικιστικής κβαντομηχανικής και της θεωρίας των κβαντικών πεδίων. Όπως η Σαλώμη, στην όπερα του Ρίχαρντ Στράους, το ηλεκτρόνιο φαίνεται να κάνει το χορό των επτά πέπλων και ο χορός δεν έχει ακόμη τελειώσει. Το ηλεκτρόνιο έχει ακόμα μερικά μυστικά να αποκαλύψει.

Αυτό το άρθρο θα καλύψει κυρίως τις πιο σύγχρονες αναπαραστάσεις του ηλεκτρονίου. Η ιστορία θα ξεκινήσει με μια σύντομη υπενθύμιση των ηλεκτρονίων της κλασικής φυσικής και των αρχών της κβαντικής θεωριάς, αλλά αυτά θα χρησιμοποιηθούν μόνο ως εφααλτήρια για να βυθιστούμε στην ιστορία των σύγχρονων ηλεκτρονίων. Και, όπως θα δούμε, αυτή η ιστορία πηγαίνει πολύ βαθιά.

 

Το αρχικό ηλεκτρόνιο

 

Μία συσκευή σαν το σωλήνα του Crookes, που εικονίζερται εδώ, επέτρεψε στους φυσικούς του 19ου αιώνα να μελετήσουν τις καθοδικές ακτίνες, ως μία πρώτη προσπάθεια να αντιληφυούν αυτό σήμερα αποκαλούμε ηλεκτρόνιο.

Εικ. 1. Μία συσκευή σαν το σωλήνα του Crookes, που εικονίζεται εδώ, επέτρεψε στους φυσικούς του 19ου αιώνα να μελετήσουν τις καθοδικές ακτίνες, ως μία πρώτη προσπάθεια να αντιληφθούν αυτό που σήμερα αποκαλούμε ηλεκτρόνιο.

(περισσότερα…)

Η ανίχνευση των Βαρυτικών Κυμάτων

Στις 11 φεβρουαρίου 2016 το Παρατηρητήριο Βαρυτικών Κυμάτων LIGO, WA, ανακοίνωσε:

“Ανοίγει το νέο παράθυρο στο Σύμπαν με την παρατήρηση των βαρυτικών κυμάτων από συγκρουόμενες μαύρες οπές.
Για πρώτη φορά, οι επιστήμονες έχουν παρατηρήσει κυματισμούς στον ιστό του χωροχρόνου που ονομάζονται βαρυτικά κύματα, που φθάνουν στη Γη από ένα κατακλυσμικό γεγονός στο μακρινό σύμπαν. Αυτό επιβεβαιώνει μια σημαντική πρόβλεψη του 1915 της Γενικής Θεωρίας της Σχετικότητας του Άλμπερτ Αϊνστάιν και ανοίγει ένα άνευ προηγουμένου νέο παράθυρο στο σύμπαν.

Τα βαρυτικά κύματα μεταφέρουν πληροφορίες σχετικά με τη δραματική προέλευσή τους και σχετικά με τη φύση της βαρύτητας που δεν μπορεί αλλιώς να αποκτηθεί. Οι φυσικοί έχουν καταλήξει στο συμπέρασμα ότι τα βαρυτικά κύματα που ανιχνεύτηκαν παράγονται κατά τη διάρκεια του τελικού κλάσματος του δευτερολέπτου της συγχώνευσης δύο μαύρων οπών σε μία ενιαία, πιο μαζική περιστρεφόμενη μαύρη τρύπα. Αυτή η σύγκρουση των δύο μαύρων τρυπών είχε προβλεφθεί, αλλά ποτέ δεν είχε παρατηρηθεί.

Τα βαρυτικά κύματα εντοπίστηκαν στις 14 Σεπτεμβρίου, 2015 5:51 πμ Ανατολική Ώρα (9:51 UTC) και από τα δύο δίδυμα συμβολόμετρα Laser του παρατηρητήριου βαρυτικών κυμάτων (LIGO), που βρίσκεται στο Λίβινγκστον της Λουιζιάνα, και Χάνφορντ στην Ουάσιγκτον , ΗΠΑ. Τα Παρατηρητήρια LIGO, που χρηματοδοτήθηκαν από το Εθνικό Ίδρυμα Επιστημών (NSF), σχεδιάστηκαν, κατασκευάστηκαν και λειτουργούν από το Caltech και το MIT. Η ανακάλυψη έγινε δεκτή για δημοσίευση στο περιοδικό Physical Review Letters και είναι αποτέλεσμα συνεργασίας του Παρατηρητηρίου Βαρυτικών Κυμάτων LIGO και της Virgo στην Ιταλία, που χρησιμοποιεί δεδομένα από τους δύο ανιχνευτές LIGO.

(περισσότερα…)

Η επιστημονική μελέτη του αινίγματος της δοκού που βάλλεται από σφαίρα

  • The Physics Teacher
  • By Asif Shakur, Salisbury University, Maryland US

Το παρακάτω άρθρο αναφέρεται σε ένα ενδιαφέρον πρόβλημα, με το οποίο μπορούν να ασχοληθούν οι μαθητές της Γ΄ Λυκείου, που επιθυμούν να εμπεδώσουν τις γνώσεις τους πάνω στις αρχές της διατήρησης της Ορμής και της Ενέργειας καθώς και στην περιστροφή στερεού σώματος. Δίνει όμως το έναυσμα και σε εκπαιδευτικούς να προχωρήσουν στη σύνθεση ερωτημάτων προς τους μαθητές τους σχετικά με την εφαρμογή των αρχών της διατήρησης.

Βίντεο 1: Οι δύο ξύλινες δοκοί χτυπιούνται σε διαφορετικά σημεία. Η μία κατ’ ευθείαν στο κέντρο της (η δοκός δεν περιστρέφεται) και η άλλη εκτός κέντρου (η δοκός περιστρέφεται). Ποια δοκός ανεβαίνει ψηλότερα;


Βίντεο 2: Η απάντηση. Και οι δύο φτάνουν στο ίδιο ύψος. Γιατί;

Η επιστημονική μελέτη του βίντεο της δοκού που βάλλεται από μία σφαίρα, δείχνει μια ξύλινη δοκό, η οποία βάλλεται από ένα κάθετο προς το στόχο τουφέκι. Το βίντεο δείχνει ότι η δοκός που χτυπήθηκε κατ’ ευθείαν στο κέντρο πηγαίνει ακριβώς τόσο υψηλό όσο θα πήγαινε αν τη χτυπούσαμε εκτός κέντρου(έκκεντρα). (Εικ. 1). Το πρόβλημα είναι ότι η δοκός που κτυπήθηκε εκτός κέντρου μεταφέρει, εκτός από την βαρυτική δυναμική ενέργεια και περιστροφική κινητική ενέργεια. Αυτό οδηγεί την πλειοψηφία των bloggers να ισχυριστεί ότι η δοκός που πυροβολήθηκε εκτός κέντρου δεν πρέπει να πάει τόσο ψηλά όσο αυτή που πυροβολήθηκε στο κέντρο. Άλλοι έχουν υποστηρίξει ότι η ενέργεια που συνδέεται με την περιστροφή είναι ασήμαντη και οι δύο περιπτώσεις και η δοκός θα πρέπει να ανεβεί στο ίδιο ύψος μέσα στα όρια του πειραματικού σφάλματος.

(περισσότερα…)