Η κατανόηση της ενέργειας ως μια λεπτή έννοια: Ένα μοντέλο για τη διδασκαλία και την εκμάθηση της ενέργειας

  • Του Eugene Hecht
  • Από το American Journal of Physics

ΠΕΡΙΛΗΨΗ

Μια μελέτη των εγχειριδίων φυσικής από τη δεκαετία του 1860 μέχρι σήμερα αποκαλύπτει τις αδυναμίες της σύγχρονης προσέγγισής μας στη διδασκαλία της έννοιας της ενέργειας. Σε απάντηση, το παρόν έγγραφο προσφέρει ένα συντονισμένο σύνολο εννοιολογικών ορισμών της δύναμης, του έργου και της ενέργειας, που μπορεί να προσφέρει μια κάπως πιο προσιτή βάση για την ανάπτυξη του θέματος παιδαγωγικά.

Ι. ΕΙΣΑΓΩΓΗ

Αυτή καθ’ εαυτή η πραγματεία δεν αφορά στη διδασκαλία μεθοδολογίας. Αντιθέτως, ασχολείται πρωτίστως με τρία συναφή ζητήματα: Πρώτον, δείχνει ότι η σημερινή ευρέως διαδεδομένη κατανόηση της «ενέργειας» είναι ανεπαρκής για διάφορους λόγους. Δεύτερον, υποστηρίζει ότι η δυναμική ενέργεια είναι ένα πολύ χρήσιμο λογιστικό εργαλείο και όχι μια εμπειρική μετρήσιμη ποσότητα. Και τρίτον, παρέχει έναν πιο σύγχρονο τρόπο για να εκτιμήσουμε τι είναι συνολικά η ενέργεια. Ανεξάρτητα από το πόσο αποτελεσματικά διδάσκουμε ξεπερασμένες συνταγές, αποτυγχάνουμε. Ανεξάρτητα από το πόσο διεξοδικά επιδιώκουμε να μεταφέρουμε τα ουσιώδη συμπεράσματα της έρευνας στις ιδέες των μαθητών και στις παιδαγωγικές προσεγγίσεις, αν οι έννοιες που προτείνουμε είναι μακρά ξεπερασμένες, δεν μπορούμε να ανταποκριθούμε στις ευθύνες μας. Είναι καιρός να αναβαθμιστεί η απλοϊκή αντίληψη του 19ου αιώνα για την «ενέργεια» και στη συνέχεια να εστιάσουμε στις τεχνικές διδασκαλίας της.

Στον πραγματικό κόσμο, όλα βρίσκονται σε κίνηση από τα άτομα μέχρι τους γαλαξίες. Τίποτα δεν είναι πραγματικά στατικό. Οι γέφυρες διαστέλλονται και συστέλλονται, οι ουρανοξύστες κουνιούνται, οι πλανήτες περιστρέφονται. Όταν πατάτε στο πάτωμα, το δάπεδο βουλιάζει, αλλάζει κι αυτό. Μόνο όταν η καθαρή δύναμη που ασκείται σε ένα υλικό αντικείμενο είναι μηδέν, δεν θα υπάρξει καμία αλλαγή στην κατάστασή του. Σε μεγάλο βαθμό, η Φυσική μελετά γεγονότα, μελετά μεταβολές, μεταβολές που έχουν συμβεί και μεταβολές που δεν έχει ακόμη συμβεί. Για να αρχίσουμε να διευκρινίζουμε και να ολοκληρώνουμε τις αντιλήψεις μας για τις έννοιες της ενέργειας, της δύναμης, του έργου και της μάζας, θα χρησιμοποιήσουμε τις ακόμα πιο θεμελιώδεις ιδέες της ύλης, της αλληλεπίδρασης και της μεταβολής.

Θα αποτελούσε έκπληξη για κάποιους αν μάθαιναν ότι εμείς οι φυσικοί δεν έχουμε ακόμα κοινά αποδεκτούς ορισμούς των βασικών μας εννοιών, όπως η ενέργεια που είναι μία από αυτές. Παρά τις προφανείς δυσκολίες, ο στόχος εδώ είναι να διαμορφώσουμε έναν ορισμό εργασίας που να ασχολείται με το τι είναι η ενέργεια. Έναν ορισμό που μπορεί να χρησιμεύσει ως το θεμέλιο του διδακτικού λόγου. Η μέριμνα δεν είναι απλώς να γράφουμε εξισώσεις όπως KE =1/2mv2 ή PE = mgh (και οι δύο μόνο προσεγγίσεις) που φαίνεται να μας λένε πώς μπορούμε να μετρήσουμε συγκεκριμένες μορφές ενέργειας, αλλά πέρα ​​από αυτό, τι ακριβώς μετράμε; Τι έχει η σφαίρα όπλου όταν έχει ενέργεια 1000 J, είτε KE είτε PE;

Ασφαλώς, αν μπορέσουμε να καταφέρουμε να κατανοήσουμε την ενέργεια σε βαθύτερο επίπεδο από ό, τι έχει γίνει μέχρι σήμερα στα σύγχρονα εγχειρίδια, θα είμαστε σε καλύτερη θέση να διδάξουμε τις λεπτότητες, που σχετίζονται με την έννοια, με έναν πιο ενιαίο τρόπο. Αλλά πρώτα πρέπει να αναγνωρίσουμε και να είμαστε πρόθυμοι να αντιμετωπίσουμε τις σημαντικές ανεπάρκειες των γνωστών συνταγών μας. Είναι σαφές ότι κατορθώσαμε να κάνουμε με επιτυχία φυσική χωρίς να είμαστε υπερβολικά προσεκτικοί σχετικά με τον ορισμό των θεμελιωδών αρχών, αλλά η διδασκαλία της φυσικής χωρίς εννοιολογική αυστηρότητα είναι ένα διαφορετικό θέμα.

Γνωρίζουμε ότι η φυσική είναι μια διαρκώς εξελισσόμενη δυναμική δημιουργία και έτσι ένας ορισμός οποιασδήποτε θεμελιώδους έννοιας – που να αντέχει στο χρόνο, όπως θα έπρεπε – πρέπει να είναι αρκετά ευρύς ώστε να επιτρέπει μελλοντική ανακάλυψη και εξέλιξη. Επιπλέον, πρέπει να αναμένουμε ότι η χρήση που έγινε κάποτε, θα απαιτεί ενημέρωση μετά από 160 χρόνια. Βεβαίως, θα ήταν αφελές να πιστεύουμε ότι η «ενέργεια» θα μπορούσε να έχει καθοριστεί ικανοποιητικά πριν ο Einstein (1907) μας δώσει E_0 = mc^2 ή πριν η Noether (1915) επινοήσει το θεώρημά της.

Ακόμη και μια συνοπτική μελέτη των εγχειριδίων φυσικής από τη δεκαετία του 1860 και μετά καθιστά εμφανές ότι παρουσιάζουν την ενέργεια σχεδόν με τον ίδιο τρόπο για όλο αυτό το διάστημα, παρά τα όσα έχουμε μάθει εν τω μεταξύ. Οι συνέπειες αυτού υπογραμμίστηκαν από τον βραβευμένο με Νόμπελ Ρίτσαρντ Φ. Φέινμαν, ο οποίος επεσήμανε (1963): «Είναι σημαντικό να συνειδητοποιήσουμε ότι στη φυσική σήμερα δεν έχουμε καμία γνώση της ενέργειας.» Τώρα πάνω από 50 χρόνια αργότερα και εμείς – η κοινότητα των φυσικών – δεν έχουμε ακόμη επιλύσει αυτό το δίλημμα. Η ιδέα της ενέργειας είναι κεντρική σε όλη τη φυσική, και όμως κάποιος θα δυσκολευτεί να βρει ένα εγχειρίδιο το οποίο να παρέχει έναν αποτελεσματικό ορισμό πέρα ​​από τις συνήθεις ταυτολογίες. Οι πιο ευρέως αποδεκτοί μας ορισμοί, αυτοί όσον αφορά στο «έργο», είναι, όπως θα δούμε, όλοι σταθερά βυθισμένοι στον 19ο αιώνα και όλοι είναι απλοϊκά ανακυκλούμενοι.

Παρ ‘όλα αυτά, οι εγγενείς ελλείψεις στον ορισμό της ενέργειας με όρους έργου, είναι ευρέως απροσδόκητες και αυτή η λανθασμένη προσέγγιση προσφέρεται συνήθως στα σύγχρονα εγχειρίδια και επομένως μέσα σε όλες τις τάξεις παγκοσμίως. Από τη δεκαετία του ’70, έχουν δημοσιευθεί δεκάδες εξαιρετικές δημοσιεύσεις σχετικά με τα θέματα της δύναμης, του έργου, της ενέργειας και της μάζας. Ως αποτέλεσμα αναμφίβολα, οι συγγραφείς βιβλίων, αρκετά λογικά, έχουν γίνει πιο προσεκτικοί και έμπειροι στην ενασχόλησή τους με την ενέργεια, δυστυχώς όμως, συνηθέστερα, χωρίς ποτέ να ασχοληθούν με το τι είναι ενέργεια. Τυπικά, καθορίζουν τόσο την κινητική ενέργεια όσο και τη δυναμική ενέργεια από την άποψη του έργου – κάτι το οποίο, σύντομα θα δούμε, είναι απλοϊκή προσέγγιση – και στη συνέχεια σύντομα μεταπηδούν στο συμπέρασμα, ότι, έχοντας ορίσει την KE και PE κατά κάποιο τρόπο, ορίζουμε και την ίδια την ενέργεια. Δεν είναι όμως έτσι. Όπως η διάκριση μεταξύ ενός κοτόπουλου και ενός βατράχου δεν καθορίζει τι είναι η ζωή.

(περισσότερα…)

(139 επισκέψεις, 1 επισκέψεις σήμερα)

Δυνάμεις μεταξύ Ηλεκτρικών Φορτίων Online: Πολλαπλής Επιλογής

Οι 20 ερωτήσεις πάνω στις Δυνάμεις μεταξύ Ηλεκτρικών φορτίων, είναι Πολλαπλής Επιλογής, Αντιστοίχισης, συμπλήρωσης κ.τ.λ. και βαθμολογούνται από 1 μονάδα η κάθε μία. Όταν ολοκληρώσεις τις απαντήσεις σου πάτα το "Αποτελέσματα" και αυτόματα θα δεις τις σωστές απαντήσεις και την επίδοσή σου.

1. Επίλεξε τις  σωστές προτάσεις. Για να διπλασιάσουμε τη δύναμη που αλληλεπιδρούν δύο σημειακά φορτία μπορούμε:

2. Δύο φορτία 6μC το καθένα αλληλεπιδρούν με δύναμη F όταν βρίσκονται σε απόσταση r μεταξύ τους. Για να αλληλεπιδρούν με την ίδια δύναμη F δύο άλλα φορτία 18μC το καθένα, πρέπει να τα τοποθετήσουμε σε απόσταση:

3. Φορτίο -Q έλκει δοκιμαστικό φορτίο q, που βρίσκεται σε απόσταση r. Για να ισορροπήσει το q στη θέση αυτή μπορούμε να τοποθετήσουμε σε απόσταση 3r, όπως φαίνεται στην εικόνα, άλλο φορτίο ίσο με:

Ερώτηση 3

4. Σημειακό φορτίο 3μC απωθεί δοκιμαστικό φορτίο, που βρίσκεται σε απόσταση r, με δύναμη 20Ν. Αν αντικαταστήσουμε το φορτίο με 15μC και μεταφέρουμε το δοκιμαστικό φορτίο σε διπλάσια απόσταση, τότε αυτό θα απωθείται με δύναμη:

Ερώτηση 4

5. Το δοκιμαστικό φορτίο q απέχει απόσταση r από το σημείο Α και r/2 από το σημείο Β. Στα σημεία Α και Β υπάρχουν δύο σημειακά θετικά φορτία Q και Q/2 αντίστοιχα. Αν αφήσουμε το δοκιμαστικό φορτίο ελεύθερο να κινηθεί, τότε αυτό:

Ερώτηση 5

6. Επίλεξε τις σωστές προτάσεις. Διαθέτουμε δύο μικρές αφόρτιστες μεταλλικές σφαίρες. Αν αρχίσουν από τη μία σφαίρα να φεύγουν ηλεκτρόνια και να πηγαίνουν στην άλλη, τότε η ηλεκτρική δύναμη μεταξύ των σφαιρών:

7. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Ένα δοκιμαστικό φορτίο q δέχεται επάνω του ηλεκτρική δύναμη.

8. Πάνω σε σημειακό ηλεκτρικό φορτίο έχουν σχεδιαστεί τα διανύσματα της έντασης \displaystyle \vec{E} και της δύναμης \displaystyle \vec{F} του ηλεκτρικού πεδίου. Επίλεξε τη σωστή πρόατση.

Ερώτηση 8

9. Τα παρακάτω σχήματα δείχνουν τη δυναμική γραμμή ενός ηλεκτρικού πεδίου και τα διανύσματα των εντάσεων και των δυνάμεων πάνω σε σημειακά θετικά και αρνητικά φορτία. Επίλεξε σε ποια διαγράμματα έχουν σχεδιαστεί σωστά τα διανύσματα των εντάσεων και των δυνάμεων.

10. Το φορτίο +Q δημιουργεί ηλεκτρικό πεδίο, το οποίο στο σημείο Α, που απέχει απόσταση r από το +Q,  έχει ένταση 50Ν/C. Αν σε συμμετρική θέση του +Q ως προς το Α τοποθετήσουμε φορτίο -Q, τότε το μέτρο της έντασης του ηλεκτρικού πεδίου στο Α γίνεται:

Ερώτηση 11

11. Η ένταση σε ένα σημείο Α ηλεκτρικού πεδίου είναι 300Ν/C, ενώ σε άλλο σημείο Β του πεδίου είναι 1200Ν/C. Στα σημεία Α και Β εισάγουμε δύο σημειακά φορτία q1 και q2 αντίστοιχα και τα φορτία αυτά δέχονται από το πεδίο ίσες δυνάμεις. Επίλεξε τη σωστή πρόταση.

12. Σε σημείο ενός ηλεκτρικού πεδίου, όπου η ένταση είναι 300Ν/C, εισάγουμε φορτίο q1. Αν στο ίδιο σημείο εισάγουμε φορτίο q2 και δεχτεί τετραπλάσια δύναμη από αυτή που δεχόταν το q1, τότε:

13. Αντιστοίχισε τις σχέσεις της αριστερής στήλης με τα μεγέθη που μετρούν στη δεξιά.
\displaystyle k \frac{Q \cdot q}{r}
Δύναμη Ηλεκτρικού Πεδίου

Unselect

Δύναμη μεταξύ σημειακών φορτίων

Unselect

Ένταση Ηλεκτρικού Πεδίου

Unselect

Δυναμική Ενέργεια

Unselect

\displaystyle k \frac{Q }{r^2}
Δύναμη Ηλεκτρικού Πεδίου

Unselect

Δύναμη μεταξύ σημειακών φορτίων

Unselect

Ένταση Ηλεκτρικού Πεδίου

Unselect

Δυναμική Ενέργεια

Unselect

\displaystyle E \cdot q}
Δύναμη Ηλεκτρικού Πεδίου

Unselect

Δύναμη μεταξύ σημειακών φορτίων

Unselect

Ένταση Ηλεκτρικού Πεδίου

Unselect

Δυναμική Ενέργεια

Unselect

\displaystyle k \frac{Q \cdot q}{r^2}
Δύναμη Ηλεκτρικού Πεδίου

Unselect

Δύναμη μεταξύ σημειακών φορτίων

Unselect

Ένταση Ηλεκτρικού Πεδίου

Unselect

Δυναμική Ενέργεια

Unselect

14. Άνοιξε με κλικ τις σωστές κάρτες και άφησε κλειστές όσες είναι λάθος.

Ένταση του ηλεκτρικού πεδίου
Δείχνει πόσο ισχυρό είναι το πεδίο.
Δυναμικές γραμμές ηλ. πεδίου
Οι γραμμές που σε κάθε σημείο τους η ένταση του πεδίου είναι ίδια.
Δυναμικό σε ένα σημείο
Η ενέργεια για να φέρουμε ένα φορτίο στο σημείο αυτό.
Δυναμική ενέργεια φορτίου
Το έργο της δύναμης του πεδίου για την απομάκρυνση του φορτίου εκτός πεδίου.

15. Επίλεξε τις σωστές προτάσεις. Το δυναμικό σε ένα σημείο Α ηλεκτρικού πεδίου είναι 1000V. Αυτό σημαίνει ότι:

16. Σε σημείο Α, που βρίσκεται σε απόσταση r από σημειακό φορτίο-πηγή Q, εισάγουμε φορτίο q. Όταν το q μεταφέρεται από το Α εκτός του ηλεκτρικού πεδίου, η δύναμη του πεδίου παράγει έργο 100J. Αν το φορτίο q το μεταφέρουμε από το Α στο Β, τότε το έργο της δύναμης του πεδίου είναι:

Ερώτηση 16

17. Σημειακό φορτίο q=1μC μεταφέρεται από σημείο Α σε σημείο Β μέσα σε ηλεκτρικό πεδίο. Η μεταφορά γίνεται μέσω της διαδρομής Ι ή μέσω της διαδρομής ΙΙ. Έστω WI και WII τα έργα της δύναμης του πεδίου κατά τη μεταφορά του q με τη διαδρομή Ι και τη διαδρομή ΙΙ αντίστοιχα. Ποια από τις παρακάτω προτάσεις είναι σωστή;

Ερώτηση 17

18. Όταν θετικό δοκιμαστικό φορτίο q μετακινείται από σημείο Α σε σημείο Β μέσα σε πεδίο που δημιουργεί σημειακό φορτίο +Q, η δυναμική του ενέργεια μειώνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές;

19. Σημειακό φορτίο q=1μC κινείται από σημείο δυναμικού +V σε σημείο διπλάσιου δυναμικού. Ποιες από τις παρακάτω προτάσεις είναι σωστές:

20. Κατά τη μετακίνηση φορτίου 2μC από σημείο Α σε σημείο Β εντός ηλεκτρικού πεδίου, απαιτείται ενέργεια 1,5·10-3J. Αν μετακινήσουμε φορτίο -5μC μεταξύ των ίδιων σημείων, το έργο της δύναμης του πεδίου θα είναι:


 


topio@viewonphysics.gr

(128 επισκέψεις, 1 επισκέψεις σήμερα)

Δυνάμεις μεταξύ Ηλεκτρικών Φορτίων Online: Σωστό-Λάθος

Please go to Δυνάμεις μεταξύ Ηλεκτρικών Φορτίων Online: Σωστό-Λάθος to view this quiz
topio@viewonphysics.gr

(133 επισκέψεις, 1 επισκέψεις σήμερα)

Δυναμικό-Διαφορά Δυναμικού

  1. Τι σημαίνει ότι το δυναμικό σε ένα σημείο είναι θετικό και τι αρνητικό;
  2. Ένα σημειακό φορτίο 10-4C βρίσκεται σε σημείο Γ εντός ηλεκτρικού πεδίου. Για να μεταφερθεί το φορτίο αυτό από το Γ εκτός πεδίου απαιτείται ενέργεια 20J. Πόσο είναι το δυναμικό στο σημείο αυτό;
  3. Για να τοποθετήσουμε σημειακό φορτίο -2μC σε σημείο Α εντός ηλεκτρικού πεδίου χρειάζεται να ξοδέψουμε ενέργεια 100J. Βρες το δυναμικό στο σημείο Α.
  4. Σημειακό φορτίο Q=4μC δημιουργεί ηλεκτρικό πεδίο. Πόσο είναι το δυναμικό σε σημείο που απέχει 1cm από το Q;
  5. Υπολόγισε το δυναμικό του πεδίου σε απόσταση 20cm από φορτίο -4μC. Που βρίκσονται όλα τα σημεία που έχουν το ίδιο δυναμικό με αυτό που υπολόγισες;
  6. Το δυναμικό σε ένα σημείο Α ηλεκτρικού πεδίου είναι -10V. Αν στο Α εισάγουμε σημειακό φορτίο 0,2μC:
    1. Πόση είναι η δυναμική ενέργεια του q;
    2. Πόσο είναι το έργο της δύναμης του ηλεκτρικού πεδίου για να μεταφερθεί το q εκτός πεδίου;
    3. Αν αφήσουμε το φορτίο q ελεύθερο στο Α, θα βγει από το πεδίο ή όχι; Γιατί;
  7. Σε πόση απόσταση από σημειακό φορτίο -5μC το δυναμικό είναι -500V;
  8. Στη θέση 4cm, πάνω στον άξονα των y τοποθετούμε σημειακό φορτίο 0,1μC.
    1. Βρες το δυναμικό στο Ο.
    2. Υπολόγισε το φορτίο που πρέπει να τοποθετήσουμε στη θέση x=3cm ώστε να μηδενιστεί το δυναμικό στο Ο.

    Άσκηση 8

  9. Στα άκρα ευθύγραμμου τμήματος ΑΒ μήκους 12cm τοποθετούμε δύο όμοια σημειακά φορτία 6μC.
    1. Πόση είναι το δυναμικό στο μέσο Μ του ΑΒ;
    2. Πόσο είναι το μέτρο της έντασης στο Μ;
    3. Αν στο σημείο Μ τοποθετήσουμε ένα θετικό σημειακό φορτίο q, θα κινηθεί ή θα παραμείνει ακίνητο;

      Άσκηση 9

    (περισσότερα…)

(91 επισκέψεις, 1 επισκέψεις σήμερα)

Ηλεκτρικό Πεδίο

  1. Με ποιον τρόπο μπορείς να διαπιστώσεις αν σε ένα χώρο υπάρχει ηλεκτρικό πεδίο;
  2. Σε τι διαφέρει η ένταση \vec{E} σε ένα δοκιμαστικό φορτίο, από τη δύναμη \vec{F} που ασκείται πάνω σ’ αυτό;
  3. Σε σημείο Σ εντός ηλεκτρικού πεδίου υπάρχει φορτίο q. Αν βάλουμε στο σημείο Σ ένα διπλάσιο φορτίο 2q, τότε στο σημείο Σ:
    1. Η ένταση του πεδίου διπλασιάζεται και η ηλεκτρική δύναμη στο φορτίο 2q παραμένει ίδια.
    2. Η ηλεκτρική δύναμη στο φορτίο 2q διπλασιάζεται και η ένταση παραμένει ίδια.
    3. Διπλασιάζονται και η ένταση στο Σ και η δύναμη στο 2q.
    4. Και τα δύο μεγέθη παραμένουν ίδια.

    Επίλεξε ποια από τις παραπάνω προτάσεις είναι σωστή.

  4. Δοκιμαστικό φορτίο q βρίσκεται μέσα σε ηλεκτρικό πεδίο σε σημείο έντασης E και ασκείται επάνω του δύναμη F. Αν το q μεταφερθεί σε σημείο τριπλάσιας έντασης, τότε στο σώμα θα ασκείται δύναμη:
    1. F/3
    2. F
    3. 2F
    4. 3F
  5. Σε σημείο Α εντός ηλεκτρικού πεδίου, πάνω σε φορτίο q ασκείται δύναμη F. Σε σημείο Β του πεδίου μεταφέρουμε φορτίο 2q, οπότε ασκείται επάνω του δύναμη F/2. Για τις εντάσεις EA και EB στα σημεία Α και Β αντίστοιχα θα ισχύει:
    1. E_B=\frac{1}{4}E_A
    2. E_B=\frac{1}{2}E_A
    3. E_B=E_A
    4. E_B=2E_A
  6. Φορτίο 4μC βρίσκεται σε σημείο ηλεκτρικού πεδίου έντασης 60 \times 10^6N/C. Η δύναμη που δέχεται το φορτίο είναι:
    1. 15Ν
    2. 60Ν
    3. 90Ν
    4. 240Ν
  7. Αν σε σημείο Σ μέσα σε ένα ηλεκτρικό πεδίο εισάγουμε σημειακό φορτίο 2μC, τότε αυτό δέχεται δύναμη 30Ν. Σε άλλο σημείο Λ του ίδιου πεδίου εισάγουμε φορτίο 8μC και δέχεται δύναμη 120Ν της ίδιας κατεύθυνσης με αυτήν που ασκείται στο φορτίο των 2μC. Το πεδίο:

    Άσκηση 7

    1. Στο Λ είναι πιο ισχυρό από τo Σ, γιατί στο Λ ασκείται μεγαλύτερη δύναμη στα φορτία.
    2. Στο Σ είναι ισχυρότερο από το Λ, γιατί ασκείται μικρότερη δύναμη, αλλά σε μικρότερα φορτία.
    3. Είναι το ίδιο ισχυρό και στα δύο σημεία, γιατί έχουμε την ίδια ένταση.
    4. Δεν μπορούμε να συμπεράνουμε πού είναι πιο ισχυρό, γιατί δε γνωρίζουμε τη πηγή του ηλεκτρικού πεδίου.

    (περισσότερα…)

(286 επισκέψεις, 1 επισκέψεις σήμερα)

Ο Νόμος του Coulomb

Επειδή οι βαρυτικές δυνάμεις είναι αμελητέες σε σύγκριση με τις ηλεκτρικές, στις ασκήσεις που ακολουθούν δε θα λαμβάνονται υπόψη, εκτός αν η άσκηση το ζητάει.

  1. Αντιστοίχισε τους ερευνητές της αριστερής στήλης του πίνακα με τα αποτελέσματα των ερευνών τους στη δεξιά.

    Ερευνητές

      Αποτελέσματα

    Oersted

    Α

    1

    Ενοποίησε τον Ηλεκτρισμό
    και το Μαγνητισμό

    Maxwell

    Β

    2

    Μέτρησε τις δυνάμεις
    μεταξύ των φορτίων

    Coulomb

    Γ

    3

    Παρατήρησε τις ιδιότητες
    του ήλεκτρου.

    Θαλής

    Δ

    4

    Διαπίστωσε ότι ο ηλεκτρισμός
    και ο μαγνητισμός
    έχουν σχέση μεταξύ τους
  2. Δύο αντίθετα σημειακά φορτία +q και -q έλκονται με δύναμη 0,12Ν. Αν τα φορτία αυτά τα φέρουμε στο 1/3 της αρχικής μεταξύ τους απόστασης, τότε η δύναμη που θα έλκονται είναι:
    1. 0,013Ν
    2. 0,04Ν
    3. 0,036Ν
    4. 1,08Ν
  3. Δύο ίσα και ομόσημα σημειακά φορτία +q και +q απωθούνται με δύναμη 0,4Ν. Αν αντικαταστήσουμε τα σημειακά φορτία με τα διπλάσιά τους, τότε θα απωθούνται με δύναμη:
    1.  0,1Ν
    2. 0,2Ν
    3. 0,8Ν
    4. 1,6Ν
  4. Δύο σημειακά φορτία q1 και q2 αληλεπιδρούν με δύναμη 0,2Ν. Αν αντικαταστήσουμε το q1 με διπλάσιο φορτίο και το q2 με τριπλάσιο ενώ τα απομακρύνουμε σε διπλάσια από την αρχική μεταξύ τους απόσταση, τότε η δύναμη θα γίνει:
    1. 0,9Ν
    2. 0,6Ν
    3. 0,4Ν
    4. 0,3Ν
  5. Δύο ίσα θετικά φορτισμένα σημειακά φορτία απωθούνται με δύναμη 0,36Ν. Για να απωθούνται με 0,9Ν, θα πρέπει να αντικατασταθούν από δύο σημειακά φορτία που το καθένα να είναι:
    1. +q/4
    2. +q/2
    3. +2q
    4. +4q
  6. Δύο σημειακά φορτία, που βρίσκονται σε απόσταση r μεταξύ τους, αλληλεπιδρούν με δύναμη 0,08Ν. Για να αλληλεπιδρούν με δύναμη 0,32Ν, θα πρέπει η απόσταση μεταξύ τους να γίνει:
    1. 2r
    2. 4r
    3. r/2
    4. r/4
  7. Τα διαγράμματα Α και Β εμφανίζουν τη μεταβολή της δύναμης Coulomb σε συνάρτηση με την απόσταση r μεταξύ τους. Ενώ τα Γ και Δ τη δύναμη σε συνάρτηση με το 1/r2. Ποια από τα διαγράμματα αυτά είναι σωστά και ποια λάθος;

    Άσκηση 7

    (περισσότερα…)

(214 επισκέψεις, 1 επισκέψεις σήμερα)

Ηλεκτρικό Ρεύμα-Ηλεκτρικό Κύκλωμα Online

Please go to Ηλεκτρικό Ρεύμα-Ηλεκτρικό Κύκλωμα Online to view this quiz

topio@viewonphysics.gr

(535 επισκέψεις, 1 επισκέψεις σήμερα)

Η Φυσική της Περιστρεφόμενης Φιάλης

Σε προηγούμενη δημοσίευσή μας με τίτλο Η Φυσική πίσω από το πέταγμα της μποτίλιας παρουσιάσαμε μία ενδιαφέρουσα προσέγγιση της δημοφιλούς συνήθειας των μαθητών να πετούν τις πλαστικές φιάλες του νερού με σκοπό αυτές να προσγειωθούν κάθετα στην επιφάνεια του θρανίου τους. Το παρακάτω άρθρο από το American Journal of Physics παρουσιάζει μία πιο εμπεριστατωμένη και αναλυτική προσέγγιση του φαινομένου, μέσα από τη μελέτη πειραματικών και θεωρητικών δεδομένων, που λήφθηκαν από μία ομάδα προπτυχιακών φοιτητών του πανεπιστημίου Twente της Ολλανδίας.

  • Των P. J. Dekker, L. A. G. Eek, M. M. Flapper, H. J. C. Horstink, A. R. Meulenkamp, and J. van der Meulen. Faculty of Science and Technology, University of Twente,The Netherlands
  • Από το American Journal of Physics

Το ενδιαφέρον της μελέτης συνίσταται στην περιστροφή μιας φιάλης, μερικώς γεμάτης με νερό, που την προσγειώνουμε σε όρθια θέση. Είναι ένα εντυπωσιακό φαινόμενο, καθώς από την πρώτη ματιά φαίνεται μάλλον απίθανο ότι ένα ψηλό περιστρεφόμενο μπουκάλι θα μπορούσε να κάνει μια τέτοια σταθερή προσγείωση. Εδώ, αναλύουμε τη φυσική πίσω από την περιστροφή της φιάλης του νερού, με βάση πειράματα και ένα αναλυτικό μοντέλο που μπορεί να χρησιμοποιηθεί στην τάξη. Οι μετρήσεις μας δείχνουν ότι η γωνιακή ταχύτητα της φιάλης μειώνεται δραστικά, επιτρέποντας μια σχεδόν κάθετη κάθοδο και μια επιτυχημένη προσγείωση. Η μειωμένη περιστροφή οφείλεται σε αύξηση της ροπής αδράνειας που προκαλείται από την αναδιανομή της μάζας του νερού κατά τη διάρκεια της πτήσης κατά μήκος της φιάλης. Τα πειραματικά και αναλυτικά αποτελέσματα συγκρίνονται ποσοτικά και δείχνουμε πώς μπορούμε να βελτιστοποιήσουμε τις πιθανότητες επιτυχούς προσγείωσης.
(περισσότερα…)

(151 επισκέψεις, 1 επισκέψεις σήμερα)

Η Φυσική πίσω από το πέταγμα της μποτίλιας

Είναι βέβαιο ότι πολλές φορές, μέσα στην τάξη, κάνουμε παρατηρήσεις στους μαθητές, γιατί πετούν τα μπουκάλια τους με το νερό πάνω στο θρανίο σε έναν άτυπο διαγωνισμό μεταξύ τους, ποιος θα καταφέρει να το προσγειώσει κάθετα στην επιφάνεια του θρανίου. Ίσως η καταλληλότερη στιγμή για να ξεκινήσουμε μία συζήτηση, ποιοι νόμοι κρύβονται πίσω από το πέταγμα της μποτίλιας και πώς μπορούν να βελτιώσουν την τεχνική για να εντυπωσιάσουν τους συμμαθητές τους, είναι η στιγμή που τα βλέμματά τους στρέφονται στον συμμαθητή ή τη συμμαθήτριά τους, που κατάφερε να βάλει την μποτίλια όρθια, ενώ εμείς απτόητοι γράφουμε στον πίνακα το δεύτερο νόμο του Νεύτωνα για την περιστροφή των σωμάτων και πασχίζουμε να τον εξηγήσουμε. Το επόμενο βήμα είναι να τους ρίξουμε την ιδέα να διοργανώσουν ένα πρωτάθλημα για την ανάδειξη του μαθητή που θα καταφέρει να πετύχει τις περισσότερες κάθετες προσγειώσεις μέσα σε ένα αριθμό ρίψεων.

  • Από το Scientific American


Το δημοφιλές βίντεο του μαθητή που πετάει μία μποτίλια με νερό και την προσγειώνει κάθετα στο τραπέζι.

Για να κατανοήσετε τη φυσική του πετάγματος της μποτίλιας, πρώτα πρέπει να καταλάβετε τη γωνιακή ορμή L=I \cdot \omega . Χωρίς πολλές λεπτομέρειες, πρόκειται για ένα γινόμενο δύο παραγόντων, της γωνιακής ταχύτητας ω (πόσο γρήγορα περιστρέφεται) και της ροπής αδράνειας Ι (πώς κατανέμεται η μάζα του γύρω από τον άξονα περιστροφής)  Όταν δεν υπάρχει εξωτερική ροπή στρέψης σε ένα αντικείμενο, ισχύει η αρχή διατήρησης της γωνιακής ορμής,  δηλαδή το γινόμενο της γωνιακής ταχύτητας και της ροπής αδράνειας παραμένει σταθερό. Κατά συνέπεια, αν το ένα από τα δύο αυξηθεί το άλλο θα πρέπει να μειωθεί ώστε να διατηρηθεί σταθερό το γινόμενό τους, δηλαδή η γωνιακή ορμή L. Ένα κλασικό παράδειγμα αυτού είναι μία περιστρεφόμενη αθλήτρια του πατινάζ στον πάγο. Αν αρχικά περιστρέφεται με τα χέρια της εκτεταμένα, έχει μια υψηλή ροπή αδράνειας, επειδή η μάζα της είναι απλωμένη, μακριά από τον άξονα περιστροφής της, που περνάει από το κέντρο μάζας της. Εάν τραβήξει τα χέρια της και τα φέρει σφιχτά στο σώμα της, η ροπή αδράνειας μειώνεται. Προκειμένου η γωνιακή ορμή της L να παραμείνει η ίδια, η γωνιακή της ταχύτητα πρέπει να αυξηθεί, ώστε να περιστρέφεται γρηγορότερα. Μπορείτε να παρατηρήσετε αυτό για τον εαυτό σας σε μια καρέκλα γραφείου που γυρίζει.

(περισσότερα…)

(490 επισκέψεις, 1 επισκέψεις σήμερα)

Εργασία στην Κινηματική-Ομαλά Μεταβαλλόμενη Κίνηση

Η εξίσωση κίνησης ενός κινητού που κινείται ευθύγραμμα είναι:

x=-48m-(16m/s)t+(4m/s^2)t^2,  για 0 \leq t \leq 10s

Με βάση την εξίσωση αυτή προχώρησε βήμα-βήμα στις παρακάτω εργασίες. Όταν τις ολοκληρώσεις πάτα το κουμπί «Αποτελέσματα» και δες την επίδοσή σου και τις σωστές απαντήσεις.

 

Δημιούργησε διάγραμμα Θέσης-Χρόνου και Ταχύτητας – Χρόνου

Please go to Εργασία στην Κινηματική-Ομαλά Μεταβαλλόμενη Κίνηση to view this quiz

Γιάννης Γαϊσίδης

gaisidis@viewonphysics.gr

img_1494

(252 επισκέψεις, 1 επισκέψεις σήμερα)